Elimination of a Free Cysteine by Creation of a Disulfide Bond Increases the Activity and Stability of Candida boidinii Formate Dehydrogenase

Author:

Zheng Junxian1,Yang Taowei1,Zhou Junping1,Xu Meijuan1,Zhang Xian1,Rao Zhiming1

Affiliation:

1. The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China

Abstract

ABSTRACT NAD + -dependent formate dehydrogenase (FDH; EC 1.2.1.2) is an industrial enzyme widely used for NADH regeneration. However, enzyme inactivation caused by the oxidation of cysteine residues is a flaw of native FDH. In this study, we relieved the oxidation of the free cysteine of FDH from Candida boidinii ( Cbo FDH) through the construction of disulfide bonds between A10 and C23 as well as I239 and C262. Variants A10C, I239C, and A10C/I239C were obtained by the site-directed mutagenesis and their properties were studied. Results showed that there were no significant changes in the optimum temperature and pH between variants and wild-type Cbo FDH. However, the stabilities of all variant enzymes were improved. Specifically, the Cbo FDH variant A10C (A10C fdh ) showed a significant increase in copper ion resistance and acid resistance, a 6.7-fold increase in half-life at 60°C, and a 1.4-fold increase in catalytic efficiency compared with the wild type. Asymmetric synthesis of l - tert -leucine indicated that the process time was reduced by 40% with variant A10C fdh , which benefited from the increase in catalytic efficiency. Circular dichroism analysis and molecular dynamics simulation indicated that variants that contained disulfide bonds lowered the overall root mean square deviation (RMSD) and consequently increased the protein rigidity without affecting the secondary structure of enzyme. This work is expected to provide a viable strategy to avoid the microbial enzyme inactivation caused by the oxidation of the free cysteine residues and improving their performances. IMPORTANCE FDH is widely used for NADH regeneration in dehydrogenase-based synthesis of optically active compounds to decrease the cost of production. This study highlighted a viable strategy that was used to eliminate the oxidation of free cysteine residues of FDH from Candida boidinii by the introduction of disulfide bonds. Using this strategy, we obtained a variant FDH with improved activity and stability. The improvement of activity and stability of FDH is expected to reduce its price and then further to decrease the cost of its application.

Funder

National High-tech R&D Program of China

Jiangsu Province Science Fund for Distinguished Young Scholars

the 111 Project

the Priority Academic Program Development of Jiangsu Higher Education Institution

the Jiangsu province Collaborative Innovation Center for Advanced Industrial Fermentation industry development program

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3