Development and Application of a PCR-Targeted Gene Disruption Method for Studying CelR Function in Thermobifida fusca

Author:

Deng Yu1,Fong Stephen S.1

Affiliation:

1. Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, Virginia 23284

Abstract

ABSTRACT Thermobifida fusca is a high-G+C-content, thermophilic, Gram-positive soil actinobacterium with high cellulolytic activity. In T. fusca , CelR is thought to act as the primary regulator of cellulase gene expression by binding to a 14-bp inverted repeat [5′-(T)GGGAGCGCTCCC(A)] that is upstream of many known cellulase genes. Previously, the ability to study the roles and regulation of cellulase genes in T. fusca has been limited largely by a lack of established genetic engineering methods for T. fusca . In this study, we developed an efficient procedure for creating precise chromosomal gene disruptions and demonstrated this procedure by generating a celR deletion strain. The celR deletion strain was then characterized using measurements for growth behavior, cellulase activity, and gene expression. The celR deletion strain of T. fusca exhibited a severely crippled growth phenotype with a prolonged lag phase and decreased cell yields for growth on both glucose and cellobiose. While the maximum endoglucanase activity and cellulase activity were not significantly changed, the endoglucanase activity and cellulase activity per cell were highly elevated. Measurements of mRNA transcript levels in both the celR deletion strain and the wild-type strain indicated that the CelR protein potentially acts as a repressor for some genes and as an activator for other genes. Overall, we established and demonstrated a method for manipulating chromosomal DNA in T. fusca that can be used to study the cellulolytic capabilities of this organism. Components of this method may be useful in developing genetic engineering methods for other currently intractable organisms.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3