Abstract
Hydrogen-dependent evolution of methane from salt marsh sediments and whole-cell suspensions of Methanobacterium thermoautotrophicum and Methanobacterium fornicicum ceased or decreased after the introduction of nitrate, nitrite, nitric oxide, or nitrous oxide. Sulfite had a similar effect on methanogenesis in the whole-cell suspensions. In salt marsh sediments, nitrous oxide was the strongest inhibitor, followed by nitric oxide, nitrite, and nitrate in decreasing order of inhibition. In whole-cell suspensions, nitric oxide was the strongest inhibitor, followed by nitrous oxide, nitrite, and nitrate. Consideration of the results from experiments using an indicator of oxidation potential, along with the reversed order of effectiveness of the nitrogen oxides in relation to their degree of reduction ,suggests that the inhibitory effect observed was not due to a redox change. Evidence is also presented that suggests that the decrease in the rate of methane production in the presence of oxides of nitrogen was not attributable to competition for methane-producing substrates.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
142 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献