Cooperating H3N2 Influenza Virus Variants Are Not Detectable in Primary Clinical Samples

Author:

Xue Katherine S.12ORCID,Greninger Alexander L.34,Pérez-Osorio Ailyn5,Bloom Jesse D.12ORCID

Affiliation:

1. Department of Genome Sciences, University of Washington, Seattle, Washington, USA

2. Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

3. Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA

4. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

5. Washington State Department of Health, Public Health Laboratories, Shoreline, Washington, USA

Abstract

Viruses mutate rapidly, and recent studies of RNA viruses have shown that related viral variants can sometimes cooperate to improve each other’s growth. We previously described two variants of H3N2 influenza virus that cooperate in cell culture. The mutation responsible for cooperation is often observed when human samples of influenza virus are grown in the lab before sequencing, but it is unclear whether the mutation also exists in human infections or is exclusively the result of lab passage. We identified nine human isolates of influenza virus that had developed the cooperating mutation after being grown in the lab and performed highly sensitive deep sequencing of the unpassaged clinical samples to determine whether the mutation existed in the original human infections. We found no evidence of the cooperating mutation in the unpassaged samples, suggesting that the cooperation arises primarily under laboratory conditions.

Funder

Fannie and John Hertz Foundation

HHS | NIH | National Institute of Allergy and Infectious Diseases

National Science Foundation

HHS | NIH | National Institute of General Medical Sciences

Howard Hughes Medical Institute

Simons Foundation

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3