Regulation of the Expression of De Novo Pyrimidine Biosynthesis Genes in Corynebacterium glutamicum

Author:

Tanaka Yuya1,Teramoto Haruhiko1,Inui Masayuki12

Affiliation:

1. Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan

2. Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan

Abstract

ABSTRACT Expression of pyrimidine de novo biosynthesis is downregulated by an exogenous uracil in many bacteria. In this study, we show that a putative binding motif sequence of PyrR is required for uracil-mediated repression of pyrR-lacZ translational fusion. However, the uracil response was still observed in the strain with the pyrR gene deleted, implying the existence of a uracil response factor other than PyrR which also acts through the PyrR binding loop region. Deletion of rho , encoding the transcription termination factor Rho, resulted in an increase in the expression of pyrR-lacZ . Moreover, the strain with a double deletion of pyrR and rho showed elimination of the uracil-responsive downregulation of the pyrR-lacZ . Therefore, expression of the pyrimidine biosynthetic gene cluster in Corynebacterium glutamicum is controlled by two different mechanisms mediated by PyrR and Rho. IMPORTANCE The pyr genes of C. glutamicum are downregulated in the presence of uracil in culture medium. The mRNA binding regulator PyrR represses the expression of pyr genes, as reported previously. However, the uracil response was still observed in the pyrR deletion strain. Deletion of rho in addition to pyrR deletion results in the elimination of the uracil response. Therefore, we identified the factors that are involved in the uracil response. Involvement of Rho in the regulation of pyrimidine de novo biosynthesis genes has not been reported.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3