Decreased permeation of cephalosporins through the outer membrane of Escherichia coli grown in salicylates

Author:

Foulds J1,Murray D M1,Chai T1,Rosner J L1

Affiliation:

1. Laboratory of Structural Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

Abstract

Escherichia coli K-12 cells grown in 1 to 5 mM sodium salicylate (SAL) or acetylsalicylate show increased phenotypic resistance to various antibiotics (J. L. Rosner, Proc. Natl. Acad. Sci. USA 82:8771-8774, 1985), including cephalosporins (this study). To determine whether these effects are caused by a decreased uptake of the antibiotics, the permeation of several cephalosporins through the outer membrane was measured. For E. coli K-12 grown in LB broth containing 5 mM SAL or acetylsalicylate, permeation of the outer membrane by the five cephalosporins tested decreased three- to fivefold compared with that in cells not grown in salicylates. Permeation of the outer membrane by cephaloridine decreased within 15 min of the addition of SAL to cells grown in broth and reached a minimum in 1 to 2 h. When cells were transferred from broth with SAL to broth without SAL, their permeability to cephaloridine increased slowly for the first 45 min and more rapidly over the next 1.5 h; the permeability then attained normal levels by 3 h. The permeability changes that occurred after media shifts, either to or from SAL, were prevented by concentrations of chloramphenicol that inhibited protein synthesis. These effects of SAL on outer membrane permeability are fully consistent with their effects on antibiotic resistance and with the report (T. Sawai, S. Hirano, and A. Yamaguchi, FEMS Microbiol. Lett. 40:233-237, 1987) that the outer membranes of SAL-treated cells are deficient in certain porins. Permeation of cephaloridine through the outer membrane also decreased when a virulent strain of E. coli K1 was grown in the presence of as little as 1 to 2 mM SAL. This raises the concern that high levels of salicylates in patients night interfere with cephalosporin or other antibiotic therapies.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference15 articles.

1. Six widespread bacterial clones among Escherichia coli Kl isolates;Achtman M.;Infect. Immun.,1983

2. Escherichia coli K-12 tolF mutants: alterations in protein composition of the outer membrane;Chai T.;J. Bacteriol.,1977

3. Gilman A. G. L. S. Goodman and A. Gilman (ed.). 1980. Goodman and Gilman's the pharmacological basis of therapeutics 6th ed. Macmillan New York.

4. Analytical isoelectric focusing of R factor-determined beta-lactamases: correlation with plasmid compatibility;Matthew M.;J. Bacteriol.,1976

5. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts;Neu H. C.;J. Biol. Chem.,1965

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3