Mechanism of escape of endogenous murine leukemia virus emv-14 from recognition by anti-AKR/Gross virus cytolytic T lymphocytes

Author:

White H D1,Robbins M D1,Green W R1

Affiliation:

1. Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03756.

Abstract

It was previously shown that spleen cells from endogenous ecotropic murine leukemia virus emv-14+ AKXL-5 mice fail to stimulate an anti-AKR/Gross virus cytolytic T-lymphocyte (CTL) response in a mixed lymphocyte culture with primed C57BL/6 responder spleen cells, whereas spleen cells from AKXL strains carrying the very similar emv-11 provirus do stimulate a response (Green and Graziano, Immunogenetics 23:106-110, 1986). We wished to determine whether the lack of response with AKXL-5 spleen cells was at the level of recognition between effector cell and target cell and whether the relevant mutation was within the emv-14 provirus. It is shown here that EMV-negative SC-1 fibroblast cells transfected with the major histocompatibility complex class I Kb gene and infected with virus isolated from the AKXL-5 strain (SC.Kb/5 cells) were not lysed by H-2b-restricted anti-AKR/Gross virus CTL. SC.Kb cells infected with virus isolated from emv-11+ strains, however, were efficiently lysed by anti-AKR/Gross virus CTL, indicating that there is nothing intrinsic to EMV-infected SC.Kb cells that would prevent them from being recognized and lysed efficiently by anti-AKR/Gross virus CTL. Analysis of virus expression for the infected SC.Kb cells by XC plaque assay and by flow cytometry indicated that emv-14 virus expression for SC.Kb/5 cells was not significantly different from that for emv-11-containing SC.Kb/9 or SC.Kb/21 cells. These data show that the mutation responsible for the lack of CTL recognition and lysis is at the level of recognition between target cell and effector cell. Furthermore, these data strongly suggest that the mutation is within the emv-14 genome. Flow cytometry experiments with monoclonal antibodies against a number of viral determinants indicated that there was no gross mutation detectable in the viral determinants analyzed. The data suggest that the relevant mutation may be a point mutation or a small insertion or deletion within a coding sequence that is critical for CTL recognition.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3