Author:
Papp-Wallace Krisztina M.,Senkfor Baui,Gatta Julian,Chai Weirui,Taracila Magdalena A.,Shanmugasundaram Veerabahu,Han Seungil,Zaniewski Richard P.,Lacey Brian M.,Tomaras Andrew P.,Skalweit Marion J.,Harris Michael E.,Rice Louis B.,Buynak John D.,Bonomo Robert A.
Abstract
ABSTRACTAcinetobacter baumanniiis an increasingly problematic pathogen in United States hospitals. Antibiotics that can treatA. baumanniiare becoming more limited. Little is known about the contributions of penicillin binding proteins (PBPs), the target of β-lactam antibiotics, to β-lactam–sulbactam susceptibility and β-lactam resistance inA. baumannii. Decreased expression of PBPs as well as loss of binding of β-lactams to PBPs was previously shown to promote β-lactam resistance inA. baumannii. Using anin vitroassay with a reporter β-lactam, Bocillin, we determined that the 50% inhibitory concentrations (IC50s) for PBP1a fromA. baumanniiand PBP3 fromAcinetobactersp. ranged from 1 to 5 μM for a series of β-lactams. In contrast, PBP3 demonstrated a narrower range of IC50s against β-lactamase inhibitors than PBP1a (ranges, 4 to 5 versus 8 to 144 μM, respectively). A molecular model with ampicillin and sulbactam positioned in the active site of PBP3 reveals that both compounds interact similarly with residues Thr526, Thr528, and Ser390. Accepting that many interactions with cell wall targets are possible with the ampicillin-sulbactam combination, the low IC50s of ampicillin and sulbactam for PBP3 may contribute to understanding why this combination is effective againstA. baumannii. Unraveling the contribution of PBPs to β-lactam susceptibility and resistance brings us one step closer to identifying which PBPs are the best targets for novel β-lactams.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献