Affiliation:
1. BioCentrum-DTU, Biochemistry and Nutrition Group, Technical University of Denmark, Kgs. Lyngby, Denmark
Abstract
ABSTRACT
The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G
+
) organisms, are plausible significant players and have received much attention. Gram-negative (G
−
) commensals, such as members of the family
Enterobacteriaceae
, may, however, be immunomodulators that are as important as G
+
organisms but tend to be overlooked. Dendritic cells (DCs) are crucial immune regulators, and therefore, the present study aimed at investigating differences among human gut flora-derived LAB and G
−
bacteria in their patterns of DC polarization. Human monocyte-derived DCs were exposed to UV-killed bacteria, and cytokine secretion and surface marker expression were analyzed. Profound differences in the DC polarization patterns were found among the strains. While strains of LAB varied greatly in their capacity to induce interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α), G
−
strains were consistently weak IL-12 and TNF-α inducers. All strains induced significant amounts of IL-10, but G
−
bacteria were far more potent IL-10 inducers than LAB. Interestingly, we found that when weakly IL-12- and TNF-α-inducing LAB and strong IL-12- and TNF-α-inducing LAB were mixed, the weakly IL-12- and TNF-α-inducing LAB efficiently inhibited otherwise strong IL-12- and TNF-α-inducing LAB, yet when weakly IL-12- and TNF-α-inducing LAB were mixed with G
−
bacteria, they synergistically induced IL-12 and TNF-α. Furthermore, strong IL-12- and TNF-α-inducing LAB efficiently up-regulated surface markers (CD40, CD83, CD86, and HLA-DR), which were inhibited by weakly IL-12- and TNF-α-inducing LAB. All G
−
bacteria potently up-regulated surface markers; however, these markers were not inhibited by weakly IL-12- and TNF-α-inducing LAB. These much divergent DC stimulation patterns among intestinal bacteria, which encompass both antagonistic and synergistic relationships, support the growing evidence that the composition of the gut flora affects immune regulation and that compositional imbalances may be involved in disease etiology.
Publisher
American Society for Microbiology
Subject
Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy
Reference50 articles.
1. Arunachalam, K., H. S. Gill, and R. K. Chandra. 2000. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur. J. Clin. Nutr.54:263-267.
2. Bischoff, S., and S. E. Crowe. 2004. Food allergy and the gastrointestinal tract. Curr. Opin. Gastroenterol.20:156-161.
3. Bjorksten, B., P. Naaber, E. Sepp, and M. Mikelsaar. 1999. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin. Exp. Allergy29:342-346.
4. Bjorksten, B., E. Sepp, K. Julge, T. Voor, and M. Mikelsaar. 2001. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol.108:516-520.
5. Boudeau, J., A. L. Glasser, S. Julien, J. F. Colombel, and A. Darfeuille-Michaud. 2003. Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent-invasive E. coli strains isolated from patients with Crohn's disease. Aliment. Pharm. Ther.18:45-56.
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献