Migration of Nucleocapsids in Vesicular Stomatitis Virus-Infected Cells Is Dependent on both Microtubules and Actin Filaments

Author:

Yacovone Shalane K.1,Smelser Amanda M.1,Macosko Jed C.12,Holzwarth George2,Ornelles David A.3,Lyles Douglas S.1

Affiliation:

1. Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA

2. Department of Physics, Wake Forest University, Winston-Salem, North Carolina, USA

3. Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA

Abstract

ABSTRACT The distribution of vesicular stomatitis virus (VSV) nucleocapsids in the cytoplasm of infected cells was analyzed by scanning confocal fluorescence microscopy using a newly developed quantitative approach called the border-to-border distribution method. Nucleocapsids were located near the cell nucleus at early times postinfection (2 h) but were redistributed during infection toward the edges of the cell. This redistribution was inhibited by treatment with nocodazole, colcemid, or cytochalasin D, indicating it is dependent on both microtubules and actin filaments. The role of actin filaments in nucleocapsid mobility was also confirmed by live-cell imaging of fluorescent nucleocapsids of a virus containing P protein fused to enhanced green fluorescent protein. However, in contrast to the overall redistribution in the cytoplasm, the incorporation of nucleocapsids into virions as determined in pulse-chase experiments was dependent on the activity of actin filaments with little if any effect on inhibition of microtubule function. These results indicate that the mechanisms by which nucleocapsids are transported to the farthest reaches of the cell differ from those required for incorporation into virions. This is likely due to the ability of nucleocapsids to follow shorter paths to the plasma membrane mediated by actin filaments. IMPORTANCE Nucleocapsids of nonsegmented negative-strand viruses like VSV are assembled in the cytoplasm during genome RNA replication and must migrate to the plasma membrane for assembly into virions. Nucleocapsids are too large to diffuse in the cytoplasm in the time required for virus assembly and must be transported by cytoskeletal elements. Previous results suggested that microtubules were responsible for migration of VSV nucleocapsids to the plasma membrane for virus assembly. Data presented here show that both microtubules and actin filaments are responsible for mobility of nucleocapsids in the cytoplasm, but that actin filaments play a larger role than microtubules in incorporation of nucleocapsids into virions.

Funder

HHS | NIH | National Cancer Institute

HHS | NIH | National Institute of Allergy and Infectious Diseases

National Science Foundation

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3