Clonal Distribution of Superantigen Genes in Clinical Staphylococcus aureus Isolates

Author:

Holtfreter S.1,Grumann D.1,Schmudde M.1,Nguyen H. T. T.1,Eichler P.1,Strommenger B.2,Kopron K.3,Kolata J.1,Giedrys-Kalemba S.3,Steinmetz I.4,Witte W.2,Bröker B. M.1

Affiliation:

1. Institute for Immunology and Transfusion Medicine, University of Greifswald, Greifswald, Germany

2. National Reference Center for Staphylococci, Wernigerode, Germany

3. Department of Microbiology and Immunology, Pomeranian Medical University, Sczcecin, Poland

4. Friedrich-Loeffler Institute for Medical Microbiology, University of Greifswald, Greifswald, Germany

Abstract

ABSTRACT Staphylococcus aureus is both a successful human commensal and a major pathogen. The elucidation of the molecular determinants of virulence, in particular assessment of the contributions of the genetic background versus those of mobile genetic elements (MGEs), has proved difficult in this variable species. To address this, we simultaneously determined the genetic backgrounds ( spa typing) and the distributions of all 19 known superantigens and the exfoliative toxins A and D (multiplex PCR) as markers for MGEs. Methicillin- sensitive S. aureus strains from Pomerania, 107 nasal and 88 blood culture isolates, were investigated. All superantigen-encoding MGEs were linked more or less tightly to the genetic background. Thus, each S. aureus clonal complex was characterized by a typical repertoire of superantigen and exfoliative toxin genes. However, within each S. aureus clonal complex and even within the same spa type, virulence gene profiles varied remarkably. Therefore, virulence genes of nasal and blood culture isolates were separately compared in each clonal complex. The results indicated a role in infection for the MGE harboring the exfoliative toxin D gene. In contrast, there was no association of superantigen genes with bloodstream invasion. In summary, we show here that the simultaneous assessment of virulence gene profiles and the genetic background increases the discriminatory power of genetic investigations into the mechanisms of S. aureus pathogenesis.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3