Developmental dynamics of mitochondrial mRNA abundance and editing reveal roles for temperature and the differentiation-repressive kinase RDK1 in cytochrome oxidase subunit II mRNA editing

Author:

Smith Joseph T.1ORCID,Tylec Brianna1,Naguleswaran Arunasalam2,Roditi Isabel2,Read Laurie K.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York, USA

2. Institute of Cell Biology, University of Bern , Bern, Switzerland

Abstract

ABSTRACT Developmental regulation of mitochondrial uridine insertion/deletion editing in Trypanosoma brucei is necessary to modulate parasite metabolism as it shifts from dependence on glycolysis for ATP production in the mammalian bloodstream form (BSF) to oxidative phosphorylation in the insect procyclic form (PCF). However, the timing and stimuli that regulate mRNA editing have been poorly characterized. Here, we utilized a pleomorphic T. brucei strain and quantitative RT-PCR and droplet digital PCR analyses to evaluate the changes in total mRNA abundance and editing as parasites progressively differentiate from slender BSF to PCF and investigate the effect of individual stimuli on mitochondrial gene expression. We observed little change during the slender-to-stumpy BSF transition. Rather, we found that mainly the mitochondrial cytochrome (COI, COII, COIII, and CYb) mRNAs are upregulated within 24 h after stumpy BSF is stimulated to differentiate to PCF in vitro and during in vivo tsetse fly infections. Temperature reduction from 37°C to 27°C is a critical factor for increasing the editing of COII and COIII mRNAs and COIV protein expression but not the editing of CYb mRNA or RISP protein expression. We further demonstrate that the depletion of the differentiation-repressive kinase RDK1 couples with temperature reduction to stimulate COII mRNA editing, and the accessory factor p22 is required for the cold-responsive upregulation of COII mRNA editing. Overall, we show that cytochrome mRNAs are regulated during development by distinct stimuli through a variety of methods to increase their abundance and/or editing. IMPORTANCE Trypanosoma brucei is the unicellular parasite that causes African sleeping sickness and nagana disease in livestock. The parasite has a complex life cycle consisting of several developmental forms in the human and tsetse fly insect vector. Both the mammalian and insect hosts provide different nutritional environments, so T. brucei must adapt its metabolism to promote its survival and to complete its life cycle. As T. brucei is transmitted from the human host to the fly, the parasite must regulate its mitochondrial gene expression through a process called uridine insertion/deletion editing to achieve mRNAs capable of being translated into functional respiratory chain proteins required for energy production in the insect host. Therefore, it is essential to understand the mechanisms by which T. brucei regulates mitochondrial gene expression during transmission from the mammalian host to the insect vector.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

Swiss National Science Foundation

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3