Broad-Range Direct Detection and Identification of Fungi by Use of the PLEX-ID PCR-Electrospray Ionization Mass Spectrometry (ESI-MS) System

Author:

Simner Patricia J.1,Uhl James R.1,Hall Leslie1,Weber Michelle M.1,Walchak Robert C.1,Buckwalter Seanne1,Wengenack Nancy L.1

Affiliation:

1. Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA

Abstract

ABSTRACT The PLEX-ID system is a novel technology that couples PCR amplification and electrospray ionization-mass spectrometry to identify pathogens directly in clinical specimens. The analytical performance of the PLEX-ID Broad Fungal assay was compared with that of traditional culture identification by using 91 characterized fungal culture isolates (64 manufacturer-claimed and 27 nonclaimed organisms) and directly by using 395 respiratory specimens. Discordant results were resolved by D2 large-subunit ribosomal DNA fungal sequencing. Environmental studies were performed to monitor for potential contamination. The PLEX-ID Broad Fungal assay correctly identified 95.6% (87/91) and 81.3% (74/91) of the culture isolates to the genus and species levels, respectively. Of the manufacturer-claimed organisms, 100% (64/64) and 92.2% (59/64) were correctly identified to the genus and species levels, respectively. Direct analysis of respiratory specimens resulted in 67.6% (267/395) and 66.6% (263/395) agreement with culture results to the genus and species levels, respectively, with 16.2% (64/395) of the results discordant with culture and 16.2% (64/395) not detected by the system. The majority (>95%) of the isolates not detected directly by the PLEX-ID system ultimately grew in low quantities in culture (≤20 colonies). In 20.3% (35/172) of the respiratory specimens where no growth was observed in culture, the PLEX-ID system identified a fungus, suggesting a potential increase in sensitivity over culture in some instances. The PLEX-ID system provides a rapid method for the detection of a broad array of fungi directly in respiratory specimens and has the potential of impacting turnaround times and patient care by reducing the need to wait for the growth of an organism in culture.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3