The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes

Author:

Jin S G1,Roitsch T1,Christie P J1,Nester E W1

Affiliation:

1. Department of Microbiology, University of Washington, Seattle 98195.

Abstract

Virulence genes of Agrobacterium tumefaciens are induced in parallel in the presence of plant phenolic compounds such as acetosyringone and the two regulatory vir genes virA and virG. In this study we identified a cis-acting regulatory sequence in the 5'-noncoding region of the virE operon that is essential for this activation. To do this, we constructed a series of deletion mutants by using exonuclease Bal 31. Western blot (immunoblot) analysis showed that the 70 base pairs upstream of the transcriptional start site were sufficient for full virE gene induction. A conserved dodecadeoxynucleotide sequence (vir box), which was previously identified in the nontranscribed sequences of all vir genes, was located at 5' end of the minimum required promoter sequence. Deletion of this vir box only completely abolished induction of the virE gene. This demonstrates that the vir box functions as an upstream regulatory sequence. To study the role of the VirG protein in the activation process, we overproduced the native-sized VirG protein in Escherichia coli by fusing the lacZ' start codon ATG with the second virG codon AAA using site-directed mutagenesis. The VirG protein was purified and renatured from E. coli and was shown to bind to a specific sequence in two vir gene promoters. Footprinting analysis of the virE and virB promoters identified the 12-base-pair vir box as the VirG-binding core sequence.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3