Mechanisms of DNA Utilization by Estuarine Microbial Populations

Author:

Paul John H.1,DeFlaun Mary F.1,Jeffrey Wade H.1

Affiliation:

1. Department of Marine Science, University of South Florida, St. Petersburg, Florida 33701

Abstract

The mechanisms of utilization of DNA by estuarine microbial populations were investigated by competition experiments and DNA uptake studies. Deoxyribonucleoside monophosphates, thymidine, thymine, and RNA all competed with the uptake of radioactivity from [ 3 H]DNA in 4-h incubations. In 15-min incubations, deoxyribonucleoside monophosphates had no effect or stimulated [ 3 H]DNA binding, depending on the concentration. The uptake of radioactivity from [ 3 H]DNA resulted in little accumulation of trichloroacetic acid-soluble intracellular radioactivity and was inhibited by the DNA synthesis inhibitor novobiocin. Molecular fractionation studies indicated that some radioactivity from [ 3 H]DNA appeared in the RNA (10 and 30% at 4 and 24 h, respectively) and protein (approximately 3%) fractions. The ability of estuarine microbial assemblages to transport gene sequences was investigated by plasmid uptake studies, followed by molecular probing. Although plasmid DNA was detected on filters after filtration of plasmid-amended incubations, DNase treatment of filters removed this DNA, indicating that there was little transport of intact gene sequences. These observations led to the following model for DNA utilization by estuarine microbial populations. (i) DNA is rapidly bound to the cell surface and (ii) hydrolyzed by cell-associated and extracellular nonspecific nucleases. (iii) DNA hydrolysis products are transported, and (iv) the products are rapidly salvaged into nucleic acids, with little accumulation into intracellular nucleotide pools.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3