Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

Author:

Gyure Ruth A.1,Konopka Allan1,Brooks Austin1,Doemel William1

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, and Biology Department, Wabash College, Crawfordsville, Indiana 479332

Abstract

Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H 2 S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H 2 S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [ 14 C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference39 articles.

1. American Public Health Association. 1975. Standard methods for the examination of water and wastewater 14th ed. American Public Health Association Washington D.C.

2. Brock T. D. 1978. Thermophilic microorganisms and life at high temperatures. Springer-Verlag New York.

3. Modified dimethyl sulfoxide (DMSO) extraction for chlorophyll analysis of phytoplankton;Burnison B. K.;Can. J. Fish. Aquat. Sci.,1980

4. Water quality and aging of strip-mine lakes;Campbell R. S.;J. Water Pollut. Control Fed.,1969

5. Spectrophotometric determination of hydrogen sulfide in natural waters;Cline J.;Limnol. Oceanogr.,1969

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3