Structure and Characterization of Flavolipids, a Novel Class of Biosurfactants Produced by Flavobacterium sp. Strain MTN11

Author:

Bodour Adria A.1,Guerrero-Barajas Claudia2,Jiorle Beth V.3,Malcomson Mark E.3,Paull Amanda K.3,Somogyi Arpad3,Trinh Long N.3,Bates Robert B.3,Maier Raina M.4

Affiliation:

1. Department of Earth and Environmental Science, The University of Texas—San Antonio, San Antonio, Texas 78249

2. Department of Chemical and Environmental Engineering

3. Department of Chemistry

4. Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona 85721

Abstract

ABSTRACT Herein we report the structure and selected properties of a new class of biosurfactants that we have named the flavolipids. The flavolipids exhibit a unique polar moiety that features citric acid and two cadaverine molecules. Flavolipids were produced by a soil isolate, Flavobacterium sp. strain MTN11 (accession number AY162137 ), during growth in mineral salts medium, with 2% glucose as the sole carbon and energy source. MTN11 produced a mixture of at least 37 flavolipids ranging from 584 to 686 in molecular weight (MW). The structure of the major component (23%; MW = 668) was determined to be 4-[[5-(7-methyl-( E )-2-octenoylhydroxyamino)pentyl]amino]-2-[2-[[5-(7-methyl-( E )-2-octenoylhydroxyamino)pentyl]amino]-2-oxoethyl]-2-hydroxy-4-oxobutanoic acid. The partially purified flavolipid mixture isolated from strain MTN11 exhibited a critical micelle concentration of 300 mg/liter and reduced surface tension to 26.0 mN/m, indicating strong surfactant activity. The flavolipid mixture was a strong and stable emulsifier even at concentrations as low as 19 mg/liter. It was also an effective solubilizing agent, and in a biodegradation study, it enhanced hexadecane mineralization by two isolates, MTN11 (100-fold) and Pseudomonas aeruginosa ATCC 9027 (2.5-fold), over an 8-day period. The flavolipid-cadmium stability constant was measured to be 3.61, which is comparable to that for organic ligands such as oxalic acid and acetic acid. In summary, the flavolipids represent a new class of biosurfactants that have potential for use in a variety of biotechnological and industrial applications.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3