Physiological Effects of Anti-TRAP Protein Activity and tRNA Trp Charging on trp Operon Expression in Bacillus subtilis

Author:

Cruz-Vera Luis R.1,Gong Ming1,Yanofsky Charles1

Affiliation:

1. Department of Biological Sciences, Stanford University, Stanford, California 94305-5020

Abstract

ABSTRACT The Bacillus subtilis anti-TRAP protein regulates the ability of the tryptophan-activated TRAP protein to bind to trp operon leader RNA and promote transcription termination. AT synthesis is regulated both transcriptionally and translationally by uncharged tRNA Trp . In this study, we examined the roles of AT synthesis and tRNA Trp charging in mediating physiological responses to tryptophan starvation. Adding excess phenylalanine to wild-type cultures reduced the charged tRNA Trp level from 80% to 40%; the charged level decreased further, to 25%, in an AT-deficient mutant. Adding tryptophan with phenylalanine increased the charged tRNA Trp level, implying that phenylalanine, when added alone, reduces the availability of tryptophan for tRNA Trp charging. Changes in the charged tRNA Trp level observed during growth with added phenylalanine were associated with increased transcription of the genes of tryptophan metabolism. Nutritional shift experiments, from a medium containing tryptophan to a medium with phenylalanine and tyrosine, showed that wild-type cultures gradually reduced their charged tRNA Trp level. When this shift was performed with an AT-deficient mutant, the charged tRNA Trp level decreased even further. Growth rates for wild-type and mutant strains deficient in AT or TRAP or that overproduce AT were compared in various media. A lack of TRAP or overproduction of AT resulted in phenylalanine being required for growth. These findings reveal the importance of AT in maintaining a balance between the synthesis of tryptophan versus the synthesis of phenylalanine, with the level of charged tRNA Trp acting as the crucial signal regulating AT production.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3