Nitrogen Repression of the Allantoin Degradative Enzymes in Saccharomyces cerevisiae

Author:

Bossinger June1,Lawther Robert P.1,Cooper Terrance G.1

Affiliation:

1. Department of Biochemistry, Faculty of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Abstract

Saccharomyces cerevisiae can utilize allantoin as a sole nitrogen source by degrading it to ammonia, “CO 2 ,” and glyoxylate. We have previously shown that synthesis of the allantoin degradative enzymes is contingent upon the presence of allophanate, the last intermediate in the pathway. The reported repression of arginase by ammonia prompted us to ascertain whether or not the allantoin degradative system would respond in a similar manner. We observed that the differential rates of allantoinase and allophanate hydrolase synthesis were not decreased appreciably when comparing cultures grown on urea to those grown on urea plus ammonia. These experiments were also performed using the strain and conditions previously reported by Dubois, Grenson, and Wiame. We found allophanate hydrolase production to be twofold repressed by ammonia when that strain was grown on glucose-urea plus ammonia medium. If, however, serine or a number of other readily metabolized amino acids were provided in place of ammonia, production of the allantoin degradative enzymes was quickly (within 20 min) and severely repressed in both strains. We conclude that repression previously attributed to ammonia may result from its metabolism to amino acids and other metabolites.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference20 articles.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3