Prediction of Antibiotic Susceptibility for Urinary Tract Infection in a Hospital Setting

Author:

Hebert Courtney12,Gao Yuan3,Rahman Protiva4,Dewart Courtney5,Lustberg Mark2,Pancholi Preeti6,Stevenson Kurt2,Shah Nirav S.7,Hade Erinn M.89

Affiliation:

1. Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA

2. Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA

3. Division of Biostatistics, The Ohio State University College of Public Health, Columbus, Ohio, USA

4. Department of Computer Science and Engineering, The Ohio State University College of Engineering, Columbus, Ohio, USA

5. Division of Epidemiology, The Ohio State University College of Public Health, Columbus, Ohio, USA

6. Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA

7. Division of Infectious Diseases, NorthShore University HealthSystem, Evanston, Illinois, USA

8. Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA

9. Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA

Abstract

Empiric antibiotic prescribing can be supported by guidelines and/or local antibiograms, but these have limitations. We sought to use data from a comprehensive electronic health record to use statistical learning to develop predictive models for individual antibiotics that incorporate patient- and hospital-specific factors. This paper reports on the development and validation of these models with a large retrospective cohort. This was a retrospective cohort study including hospitalized patients with positive urine cultures in the first 48 h of hospitalization at a 1,500-bed tertiary-care hospital over a 4.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Center for Advancing Translational Sciences

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3