Quantification of the Relationship between Bacterial Kinetics and Host Response for Monkeys Exposed to AerosolizedFrancisella tularensis

Author:

Huang Yin1,Haas Charles N.2

Affiliation:

1. Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824

2. Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania 19104

Abstract

ABSTRACTFrancisella tularensiscan be disseminated via aerosols, and once inhaled, only a few microorganisms may result in tularemia pneumonia. Effective responses to this threat depend on a thorough understanding of the disease development and pathogenesis. In this study, a class of time-dose-response models was expanded to describe quantitatively the relationship between the temporal probability distribution of the host response and thein vivobacterial kinetics. An extensive literature search was conducted to locate both the dose-dependent survival data and thein vivobacterial count data of monkeys exposed to aerosolizedF. tularensis. One study reporting responses of monkeys to four different sizes of aerosol particles (2.1, 7.5, 12.5, and 24.0 μm) of the SCHU S4 strain and three studies involving fivein vivogrowth curves of various strains (SCHU S4, 425, and live vaccine strains) initially delivered to hosts in aerosol form (1 to 5 μm) were found. The candidate models exhibited statistically acceptable fits to the time- and dose-dependent host response and provided estimates for the bacterial growth distribution. The variation pattern of such estimates with aerosol size was found to be consistent with the reported pathophysiological and clinical observations. The predicted growth curve for 2.1-μm aerosolized bacteria was highly consistent with the available bacterial count data. This is the first instance in which the relationship between thein vivogrowth ofF.tularensisand the host response can be quantified by mechanistic mathematical models.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3