Two Strikingly Different Signaling Pathways Are Induced by Meningococcal Type IV Pili on Endothelial and Epithelial Cells

Author:

Lécuyer Hervé,Nassif Xavier,Coureuil Mathieu

Abstract

ABSTRACTFollowing adhesion on brain microvasculature,Neisseria meningitidisis able to cross the blood-brain barrier (BBB) by recruiting the polarity complex and the cell junction proteins, thus allowing the opening of the paracellular route. This feature is the consequence of the activation by the type IV pili of the β2-adrenergic receptor/β-arrestin signaling pathway. Here, we have extended this observation to primary peripheral endothelial cells, and we report that the interaction ofN. meningitidiswith the epithelium is strikingly different. The recruitment of the junctional components byN. meningitidisis indeed restricted to endothelial cell lines, and no alteration of the cell-cell junctions can be seen in epithelial monolayers following meningococcal type IV pilus-mediated colonization. Consistently, the β2-adrenergic receptor/β-arrestin pathway was not hijacked by bacteria adhering on epithelial cells. In addition, we showed that the consequences of the bacterial signaling on epithelial cells is different from that of endothelial cells, sinceN. meningitidis-induced signaling which protects the microcolonies from shear stress on endothelial cells is unable to do so on epithelial cells. Finally, we report that the minor pilin PilV, which has been shown to be essential for endothelial cell response, is not a required bacterial determinant to induce an epithelial cell response. These data demonstrate that even though pilus-mediated signaling induces an apparently similar cortical plaque, in epithelial and endothelial cell lineages, the signaling pathways are strikingly different in both models.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3