Broad-Spectrum Antimicrobial Effects of Photocatalysis Using Titanium Dioxide Nanoparticles Are Strongly Potentiated by Addition of Potassium Iodide

Author:

Huang Ying-Ying12,Choi Hwanjun13,Kushida Yu14,Bhayana Brijesh12,Wang Yuguang125,Hamblin Michael R.126ORCID

Affiliation:

1. Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA

2. Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA

3. Korean Advanced Institute of Science and Technology, Seoul, South Korea

4. Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan

5. Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China

6. Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA

Abstract

ABSTRACT Photocatalysis describes the excitation of titanium dioxide nanoparticles (a wide-band gap semiconductor) by UVA light to produce reactive oxygen species (ROS) that can destroy many organic molecules. This photocatalysis process is used for environmental remediation, while antimicrobial photocatalysis can kill many classes of microorganisms and can be used to sterilize water and surfaces and possibly to treat infections. Here we show that addition of the nontoxic inorganic salt potassium iodide to TiO 2 (P25) excited by UVA potentiated the killing of Gram-positive bacteria, Gram-negative bacteria, and fungi by up to 6 logs. The microbial killing depended on the concentration of TiO 2 , the fluence of UVA light, and the concentration of KI (the best effect was at 100 mM). There was formation of long-lived antimicrobial species (probably hypoiodite and iodine) in the reaction mixture (detected by adding bacteria after light), but short-lived antibacterial reactive species (bacteria present during light) produced more killing. Fluorescent probes for ROS (hydroxyl radical and singlet oxygen) were quenched by iodide. Tri-iodide (which has a peak at 350 nm and a blue product with starch) was produced by TiO 2 -UVA-KI but was much reduced when methicillin-resistant Staphylococcus aureus (MRSA) cells were also present. The model tyrosine substrate N -acetyl tyrosine ethyl ester was iodinated in a light dose-dependent manner. We conclude that UVA-excited TiO 2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

National Science Foundation

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3