Options for Inactivation, Adjuvant, and Route of Topical Administration of a Killed, Unencapsulated Pneumococcal Whole-Cell Vaccine

Author:

Lu Ying-Jie12345,Yadav Puja12345,Clements John D.12345,Forte Sophie12345,Srivastava Amit12345,Thompson Claudette M.12345,Seid Robert12345,Look Jee12345,Alderson Mark12345,Tate Andrea12345,Maisonneuve Jean-François12345,Robertson George12345,Anderson Porter W.12345,Malley Richard12345

Affiliation:

1. Divisions of Infectious Diseases, Department of Medicine, Children's Hospital, and Harvard Medical School, Boston, Massachusetts

2. Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana

3. Departments of Epidemiology and Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts

4. Intercell USA, Gaithersburg, Maryland

5. PATH, Seattle, Washington

Abstract

ABSTRACT We previously reported that ethanol-killed cells of a noncapsulated strain of Streptococcus pneumoniae , given intranasally with cholera toxin as an adjuvant, protect rats against pneumonia and mice against colonization of the nasopharynx and middle ear by capsulated pneumococci of various serotypes. The acceleration of pneumococcal clearance from the nasopharynx in mice is CD4 + T cell-dependent and interleukin 17A (IL-17A) mediated and can be antibody independent. Here, anticipating human studies, we have demonstrated protection with a new vaccine strain expressing a nonhemolytic derivative of pneumolysin and grown in bovine-free culture medium. Killing the cells with chloroform, trichloroethylene, or beta-propiolactone—all used without postinactivation washing—produced more-potent immunogens than ethanol, and retention of soluble components released from the cells contributed to protection. Two sequential intranasal administrations of as little as 1 μg of protein (total of cellular and soluble combined) protected mice against nasopharyngeal challenge with pneumococci. Nontoxic single and double mutants of Escherichia coli heat-labile toxin were effective as mucosal adjuvants. Protection was induced by the sublingual and buccal routes, albeit requiring larger doses than when given intranasally. Protection was likewise induced transdermally with sonicates of the killed-cell preparation. Thus, this whole-cell antigen can be made and administered in a variety of ways to suit the manufacturer and the vaccination program and is potentially a solution to the need for a low-cost vaccine to reduce the burden of childhood pneumococcal disease in low-income countries.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3