ARS2 Is a Conserved Eukaryotic Gene Essential for Early Mammalian Development

Author:

Wilson Michael D.12,Wang Diana123,Wagner Rebecca1,Breyssens Hilde4,Gertsenstein Marina5,Lobe Corrinne6,Lu Xin4,Nagy Andras5,Burke Robert D.123,Koop Ben F.12,Howard Perry L.123

Affiliation:

1. Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada

2. Department of Biology, University of Victoria, Victoria, British Columbia, Canada

3. Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia Canada

4. Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom

5. Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada

6. Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Abstract

ABSTRACT Determining the functions of novel genes implicated in cell survival is directly relevant to our understanding of mammalian development and carcinogenesis. ARS2 is an evolutionarily conserved gene that confers arsenite resistance on arsenite-sensitive Chinese hamster ovary cells. Little is known regarding the function of ARS2 in mammals. We report that ARS2 is transcribed throughout embryonic development and is expressed ubiquitously in mouse and human tissues. The mouse ARS2 protein is predominantly localized to the nucleus, and this nuclear localization is ablated in ARS2 -null embryos, which in turn die around the time of implantation. After 24 h of culture, ARS2 -null blastocysts contained a significantly greater number of apoptotic cells than wild-type or heterozygous blastocysts. By 48 h of in vitro culture, null blastocysts invariably collapsed and failed to proliferate. These data indicate ARS2 is essential for early mammalian development and is likely involved in an essential cellular process. The analysis of data from several independent protein-protein interaction studies in mammals, combined with functional studies of its Arabidopsis ortholog, SERRATE , suggests that this essential process is related to RNA metabolism.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3