Deubiquitylating Enzyme UBP64 Controls Cell Fate through Stabilization of the Transcriptional Repressor Tramtrack

Author:

Bajpe Prashanth Kumar1,van der Knaap Jan A.1,Demmers Jeroen A. A.2,Bezstarosti Karel2,Bassett Andrew3,van Beusekom Heleen M. M.4,Travers Andrew A.3,Verrijzer C. Peter1

Affiliation:

1. Department of Biochemistry, Centre for Biomedical Genetics

2. Proteomics Center

3. MRC Laboratory of Molecular Biology, Cambridge, United Kingdom

4. Department of Cardiology, Erasmus University Medical Center, P.O. Box 1738, 2040 CA Rotterdam, The Netherlands

Abstract

ABSTRACT Protein ubiquitylation plays a central role in multiple signal transduction pathways. However, the substrate specificity and potential developmental roles of deubiquitylating enzymes remain poorly understood. Here, we show that the Drosophila ubiquitin protease UBP64 controls cell fate in the developing eye. UBP64 represses neuronal cell fate but promotes the formation of nonneuronal cone cells. Using a proteomics approach, we identified the transcriptional repressor Tramtrack (TTK) as a primary UBP64 substrate. In common with TTK, reduced UBP64 levels lead to a loss of cone cells, supernumerary photoreceptors, and mechanosensory bristle cells. Previously, it was demonstrated that the blockade of neuronal cell fate was relieved by SINA-dependent ubiquitylation and degradation of TTK. We found that UBP64 counteracts SINA function by deubiquitylating TTK, leading to its stabilization and thereby promoting a nonneuronal cell fate. Mass spectrometric mapping revealed that SINA ubiquitylates multiple sites dispersed throughout TTK, which are duly deubiquitylated by UBP64. This observation suggests that both E3 SINA and UBP64 use a scanning mechanism to (de)ubiquitylate TTK. We conclude that the balance of TTK ubiquitylation by SINA and deubiquitylation by UBP64 constitutes a specific posttranslational switch controlling cell fate.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3