Monosaccharide and Chitin Content of Cell Walls of Histoplasma capsulatum and Blastomyces dermatitidis

Author:

Domer Judith E.1

Affiliation:

1. Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112

Abstract

Cell walls of Histoplasma capsulatum and Blastomyces dermatitidis , obtained by mechanical breakage of yeast- and mycelial-phase cultures, were lipid-extracted and then fractionated with ethylenediamine. Unextracted cell walls, lipid-extracted cell walls, and the three fractions resulting from ethylenediamine treatment were examined for monosaccharide and chitin content. The yeast-phase cell walls of five strains of H. capsulatum fell into two categories, designated chemotypes I and II, one of which, chemotype II, was similar to yeast-phase cell walls derived from three strains of B. dermatitidis. H. capsulatum chemotype I cell walls were characterized by lower content of material soluble in ethylenediamine, higher chitin content, and lower monosaccharide content than H. capsulatum chemotype II or B. dermatitidis cell walls. Approximately 80% of the monosaccharides of chemotype I cell walls was combined in forms susceptible to attack by mild acid hydrolysis, compared with about 50% of the monosaccharides of chemotype II and B. dermatitidis. H. capsulatum and B. dermatitidis yeast-phase cell walls could be distinguished, however, by their susceptibility to attack by a crude enzyme system derived from a Streptomyces sp. incubated with chitin as the only carbon source. Both glucose and acetylglucosamine were released from H. capsulatum cell walls, regardless of chemotype, during enzymatic hydrolysis, whereas only acetylglucosamine was released from B. dermatitidis yeast-phase cell walls. Mycelial-phase cell walls of H. capsulatum and B. dermatitidis were characterized by lower content of material soluble in ethylenediamine, higher proportions of mannose, and lower chitin content than their respective yeast phases. Glucose and acetylglucosamine were both released from all mycelial-phase cell walls, whether H. capsulatum or B. dermatitidis , by the crude enzyme system.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3