Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus mirabilis

Author:

Howery Kristen E.1,Clemmer Katy M.2,Şimşek Emrah3,Kim Minsu3,Rather Philip N.12

Affiliation:

1. Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA

2. Research Service, Atlanta VA Medical Center, Decatur, Georgia, USA

3. Department of Physics, Emory University, Atlanta, Georgia, USA

Abstract

ABSTRACT A key regulator of swarming in Proteus mirabilis is the Rcs phosphorelay, which represses flhDC , encoding the master flagellar regulator FlhD 4 C 2 . Mutants in rcsB , the response regulator in the Rcs phosphorelay, hyperswarm on solid agar and differentiate into swarmer cells in liquid, demonstrating that this system also influences the expression of genes central to differentiation. To gain a further understanding of RcsB-regulated genes involved in swarmer cell differentiation, transcriptome sequencing (RNA-Seq) was used to examine the RcsB regulon. Among the 133 genes identified, minC and minD , encoding cell division inhibitors, were identified as RcsB-activated genes. A third gene, minE , was shown to be part of an operon with minCD . To examine minCDE regulation, the min promoter was identified by 5′ rapid amplification of cDNA ends (5′-RACE), and both transcriptional lacZ fusions and quantitative real-time reverse transcriptase (qRT) PCR were used to confirm that the minCDE operon was RcsB activated. Purified RcsB was capable of directly binding the minC promoter region. To determine the role of RcsB-mediated activation of minCDE in swarmer cell differentiation, a polar minC mutation was constructed. This mutant formed minicells during growth in liquid, produced shortened swarmer cells during differentiation, and exhibited decreased swarming motility. IMPORTANCE This work describes the regulation and role of the MinCDE cell division system in P. mirabilis swarming and swarmer cell elongation. Prior to this study, the mechanisms that inhibit cell division and allow swarmer cell elongation were unknown. In addition, this work outlines for the first time the RcsB regulon in P. mirabilis . Taken together, the data presented in this study begin to address how P. mirabilis elongates upon contact with a solid surface.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3