Protection against Lethal Challenge with Streptococcus pneumoniae Is Conferred by Aryl Hydrocarbon Receptor Activation but Is Not Associated with an Enhanced Inflammatory Response

Author:

Vorderstrasse Beth A.1,Lawrence B. Paige1

Affiliation:

1. Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington 99164-6534

Abstract

ABSTRACT Streptococcus pneumoniae is a common respiratory pathogen and a major cause of morbidity and mortality in humans, particularly in the elderly and young children. The pulmonary immune response to S. pneumoniae is initiated very rapidly, and, ideally, innate immune responses are able to contain bacterial colonization. In the studies presented here, we sought to determine whether activation of the aryl hydrocarbon receptor (AhR) would protect mice from an otherwise lethal infection with S. pneumoniae . The rationale for this hypothesis is that, although most AhR agonists are potent immunosuppressants, AhR activation enhances the inflammatory response to pathogenic and nonpathogenic stimuli. Specifically, neutrophil numbers and levels of inflammatory cytokines are often increased in mice treated with the potent AhR agonist 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD). To test the hypothesis, vehicle control- or TCDD-treated mice were intranasally infected with S. pneumoniae . Mortality, pulmonary bacterial burden, cytokine/chemokine levels, and influx of immune cells to the lung were analyzed at various times postinfection. As predicted, survival was substantially improved in the mice treated with TCDD, and the pulmonary bacterial burden was decreased. Surprisingly, however, there was no evidence suggesting that protection resulted from an enhanced inflammatory response. In fact, neutrophil numbers and inflammatory chemokines and cytokines were all decreased in the TCDD-treated mice relative to vehicle control-treated mice. This suggests that the protective effect of AhR activation is not the result of altered immune function but instead may reflect a direct effect on the response of lung cells to infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3