Affiliation:
1. Department of Animal Nutrition, National Institute of Animal Industry, Tsukuba Norindanchi, Ibaraki 305-0901, Japan
Abstract
ABSTRACT
The transport of cellobiose in mixed ruminal bacteria harvested from a holstein cow fed an Italian ryegrass hay was determined in the presence of nojirimycin-1-sulfate, which almost inhibited cellobiase activity. The kinetic parameters of cellobiose uptake were 14 μM for the
K
m
and 10 nmol/min/mg of protein for the
V
max
. Extracellular and cell-associated cellobiases were detected in the rumen, with both showing higher
V
max
values and lower affinities than those determined for cellobiose transport. The proportion of cellobiose that was directly transported before it was extracellularly degraded into glucose increased as the cellobiose concentration decreased, reaching more than 20% at the actually observed levels of cellobiose in the rumen, which were less than 0.02 mM. The inhibitor experiment showed that cellobiose was incorporated into the cells mainly by the phosphoenolpyruvate phosphotransferase system and partially by an ATP-dependent and proton-motive-force-independent active transport system. This finding was also supported by determinations of phosphoenolpyruvate phosphotransferase-dependent NADH oxidation with cellobiose and the effects of artificial potentials on cellobiose transport. Cellobiose uptake was sensitive to a decrease in pH (especially below 6.0), and it was weakly but significantly inhibited in the presence of glucose.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献