Overexpression of the Saccharomyces cerevisiae Mannosylphosphodolichol Synthase-Encoding Gene in Trichoderma reesei Results in an Increased Level of Protein Secretion and Abnormal Cell Ultrastructure

Author:

Kruszewska Joanna S.1,Butterweck Arno H.2,Kurza˛tkowski Wiesław3,Migdalski Andrzej1,Kubicek Christian P.2,Palamarczyk Graz˙yna1

Affiliation:

1. Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw,1and

2. Institute of Biochemical Technology and Microbiology, TU Wien, A-1060 Vienna, Austria2

3. State Institute of Hygiene, 00-791 Warsaw,3 Poland, and

Abstract

ABSTRACT Production of extracellular proteins plays an important role in the physiology of Trichoderma reesei and has potential industrial application. To improve the efficiency of protein secretion, we overexpressed in T. reesei the DPM1 gene of Saccharomyces cerevisiae , encoding mannosylphosphodolichol (MPD) synthase, under homologous, constitutively acting expression signals. Four stable transformants, each with different copy numbers of tandemly integrated DPM1 , exhibited roughly double the activity of MPD synthase in the respective endoplasmic reticulum membrane fraction. On a dry-weight basis, they secreted up to sevenfold-higher concentrations of extracellular proteins during growth on lactose, a carbon source promoting formation of cellulases. Northern blot analysis showed that the relative level of the transcript of cbh1 , which encodes the major cellulase (cellobiohydrolase I [CBH I]), did not increase in the transformants. On the other hand, the amount of secreted CBH I and, in all but one of the transformants, intracellular CBH I was elevated. Our results suggest that posttranscriptional processes are responsible for the increase in CBH I production. The carbohydrate contents of the extracellular proteins were comparable in the wild type and in the transformants, and no hyperglycosylation was detected. Electron microscopy of the DPM1 -amplified strains revealed amorphous structure of the cell wall and over three times as many mitochondria as in the control. Our data indicate that molecular manipulation of glycan biosynthesis in Trichoderma can result in improved protein secretion.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3