Quantitative Immunofluorescence of Regulated eps Gene Expression in Single Cells of Ralstonia solanacearum

Author:

Kang Yaowei1,Saile Elke1,Schell Mark A.12,Denny Timothy P.1

Affiliation:

1. Departments of Plant Pathology1 and

2. Microbiology,2 The University of Georgia, Athens, Georgia 30602

Abstract

ABSTRACT Ralstonia solanacearum , a phytopathogenic bacterium, uses an environmentally sensitive and complex regulatory network to control expression of multiple virulence genes. Part of this network is an unusual autoregulatory system that produces and senses 3-hydroxypalmitic acid methyl ester. In culture, this autoregulatory system ensures that expression of virulence genes, such as those of the eps operon encoding biosynthesis of the acidic extracellular polysaccharide, occurs only at high cell density (>10 7 cells/ml). To determine if regulation follows a similar pattern within tomato plants, we first developed a quantitative immunofluorescence (QIF) method that measures the relative amount of a target protein within individual bacterial cells. For R. solanacearum , QIF was used to determine the amount of β-galactosidase protein within wild-type cells containing a stable eps-lacZ reporter allele. When cultured cells were examined to test the method, QIF accurately detected both low and high levels of eps gene expression. QIF analysis of R. solanacearum cells recovered from stems of infected tomato plants showed that expression of eps during pathogenesis was similar to that in culture. These results suggest that there are no special signals or conditions within plants that override or short-circuit the regulatory processes observed in R. solanacearum in culture. Because QIF is a robust, relatively simple procedure that uses generally accessible equipment, it should be useful in many situations where gene expression in single bacterial cells must be determined.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3