Genetic and structural analysis of a virulence determinant in polyomavirus VP1

Author:

Bauer P H1,Bronson R T1,Fung S C1,Freund R1,Stehle T1,Harrison S C1,Benjamin T L1

Affiliation:

1. Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

The LID strain of polyomavirus differs from other laboratory strains in causing a rapidly lethal infection of newborn C3H/Bi mice. This virulent behavior of LID was attenuated by dilution, yet at sublethal doses LID was able to induce tumors at a high frequency, like its parent virus PTA. By constructing and assaying LID-PTA recombinant viruses and by DNA sequencing, the determinant of virulence in LID was mapped to the major viral capsid protein, VP1. The VP1s of LID and PTA differed at two positions: at 185, LID has phenylalanine and PTA has tyrosine, and at 296, LID has alanine and PTA has valine. Results obtained with viruses constructed by site-directed mutagenesis showed that alanine at position 296 is sufficient to confer a fully virulent phenotype regardless of which amino acid is at position 185. However, with valine at position 296, an effect of phenylalanine at position 185 is apparent, as this virus possesses an intermediate level of virulence. A crystal structure of polyomavirus complexed with 3'-sialyl lactose previously indicated van der Waals contacts between the side chain of valine 296 and the sialic acid ring (T. Stehle, Y. Yan, T. L. Benjamin, and S. C. Harrison, Nature [London] 369:160-163, 1994). When this interaction was modeled with alanine, these contacts were greatly reduced. Direct confirmation that the substitutions in VP1 affected receptor binding was obtained by studying virus hemagglutination behavior. The ensemble of results are discussed in terms of the idea that a lower affinity of the virus for its receptor can result in more rapid spread and increased pathogenicity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3