Differences in the role of the cytoplasmic domain of human parainfluenza virus fusion proteins

Author:

Yao Q1,Compans R W1

Affiliation:

1. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Abstract

We have investigated the roles of the cytoplasmic domains of the human parainfluenza virus type 2 (PI2) and type 3 (PI3) fusion (F) proteins in protein transport and cell fusion activity. By using the vaccinia virus-T7 transient expression system, a series of F protein cytoplasmic tail truncation mutants was studied with respect to intracellular and surface expression and the ability to induce cell fusion when coexpressed with the corresponding hemagglutinin-neuraminidase (HN) proteins. All of the cytoplasmic tail truncation mutants of PI2F were expressed at high levels intracellularly or on cell surfaces as measured by immunoprecipitation and cell surface biotinylation assays. In addition, when coexpressed with PI2HN, these truncation mutants of PI2F were all found to be essentially unimpaired in the ability to induce cell fusion as measured by a quantitative cell fusion assay. In contrast, surface expression and cell fusion activity were found to be eliminated by a mutant of PI3F in which the entire cytoplasmic tail was deleted, and the mutant protein appeared to be unable to assemble into a high-molecular-weight oligomeric structure. To further investigate whether there is a specific sequence requirement in the cytoplasmic tail of PI3F, a chimeric protein consisting of the PI3F extracellular and transmembrane domains and the PI2F cytoplasmic tail was constructed. This chimeric protein was detected on the surface, and it was capable of inducing cell fusion when expressed together with PI3HN, although the fusogenic activity was reduced compared with that of wild-type PI3F. These results demonstrate that although PI2 and PI3 viruses belong to the same parainfluenza virus genus, these viruses show marked differences with respect to functional requirements for the cytoplasmic tail of the F glycoprotein.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3