Diet-induced obesity and diabetes enhance mortality and reduce vaccine efficacy for SARS-CoV-2

Author:

Johnson Robert M.1,Ardanuy Jeremy1,Hammond Holly1,Logue James1,Jackson Lian1,Baracco Lauren1,McGrath Marisa1,Dillen Carly1,Patel Nita2,Smith Gale2,Frieman Matthew1ORCID

Affiliation:

1. Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, Maryland, USA

2. Novavax , Gaithersburg, Maryland, USA

Abstract

ABSTRACT Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged in Wuhan, China, in December 2019. As of September 2023, there have been over 770 million confirmed cases of COVID-19, including over 6.9 million deaths. Epidemiologic studies have indicated that comorbidities of obesity and diabetes mellitus are associated with increased morbidity and mortality following SARS-CoV-2 infection. We determined how the comorbidities of obesity and diabetes affect morbidity and mortality following SARS-CoV-2 infection in unvaccinated and adjuvanted spike nanoparticle (NVX-CoV2373) vaccinated mice. We find that obese/diabetic mice infected with SARS-CoV-2 have increased morbidity and mortality compared to age-matched normal mice. Mice that were fed a high-fat diet (HFD) and then vaccinated with NVX-CoV2373 produce equivalent neutralizing antibody titers compared to those fed a normal diet (ND). However, the HFD mice have reduced viral clearance early in infection. Analysis of the inflammatory immune response in HFD mice demonstrates a recruitment of neutrophils that was correlated with increased mortality and reduced clearance of the virus. Depletion of neutrophils in diabetic/obese vaccinated mice reduced disease severity and protected mice from lethality. This model recapitulates the increased disease severity associated with obesity and diabetes in humans with COVID-19 and is an important comorbidity to study with increasing obesity and diabetes across the world. IMPORTANCE Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a wide spectrum of diseases in the human population, from asymptomatic infections to death. It is important to study the host differences that may alter the pathogenesis of this virus. One clinical finding in coronavirus disease 2019 (COVID-19) patients is that people with obesity or diabetes are at increased risk of severe illness from SARS-CoV-2 infection. We used a high-fat diet model in mice to study the effects of obesity and type 2 diabetes on SARS-CoV-2 infection as well as how these comorbidities alter the response to vaccination. We find that diabetic/obese mice have increased disease after SARS-CoV-2 infection and they have slower clearance of the virus. We find that the lungs of these mice have increased neutrophils and that removing these neutrophils protects diabetic/obese mice from disease. This demonstrates why these diseases have increased risk of severe disease and suggests specific interventions upon infection.

Funder

Novavax

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3