Transcriptional regulation of precore and pregenomic RNAs of hepatitis B virus

Author:

Yuh C H1,Chang Y L1,Ting L P1

Affiliation:

1. Graduate Institute of Microbiology and Immunology, National Yang-Ming Medical College, Taipei, Taiwan, Republic of China.

Abstract

Hepatitis B virus (HBV) infection, either acute or chronic, has been one of the leading health problems in the world. To understand the HBV life cycle and disease process, we set out to study the regulation of viral gene expression. In this paper, we report the characterization of the HBV core promoter: two 3.5-kb transcripts, precore and pregenomic, are made from it. The latter is itself a template for viral genome replication and also encodes viral proteins essential for both viral replication and virion assembly. We identify a short sequence (from nucleotides [nt] 1744 to 1851, referred to as the basic core promoter [BCP]) that is sufficient to direct correct initiation of both precore and pregenomic messages. In addition, the two appear to be regulated in a coordinate manner. Sequences upstream of the BCP (from nt 1636 to 1744, referred to as the core upstream regulatory sequence [CURS]), have a strong stimulating effect on the BCP. Addition of the CURS to the BCP leads to a dramatic increase in both the transcription of two 3.5-kb messages and the production of 42-nm virions from transiently transfected hepatoma cells. The CURS stimulates the BCP in a position- and orientation-dependent manner. Therefore, it is unlikely that the effect is mediated through enhancer II, which has been localized to the same sequence. Deletion analysis of the CURS suggests that it contains multiple regulatory elements that control the BCP in an interactive manner. In accord with this hypothesis, the CURS is found to be bound with many distinct protein factors in footprinting experiments. Among these elements, box alpha (from nt 1646 to 1668) and box gamma delta (from nt 1671 to 1703) are two regulatory elements which individually stimulate promoter activity more than 100-fold.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3