Biogeography of the Sediment Bacterial Community Responds to a Nitrogen Pollution Gradient in the East China Sea

Author:

Xiong Jinbo12,Ye Xiansen3,Wang Kai12,Chen Heping14,Hu Changju1,Zhu Jianlin4,Zhang Demin12

Affiliation:

1. School of Marine Sciences, Ningbo University, Ningbo, China

2. 2011 Center of Modern Marine Aquaculture of East China Sea, Ningbo, China

3. Marine Environmental Monitoring Center of Ningbo, State Oceanic Administration (SOA), Ningbo, China

4. Faculty of Architectural and Civil Engineering and Environment, Ningbo University, Ningbo, China

Abstract

ABSTRACT Patterns of microbial distribution represent the integrated effects of historical and biological processes and are thus a central issue in ecology. However, there is still active debate on whether dispersal limitation contributes to microbial diversification in strongly connected systems. In this study, sediment samples were collected along a transect representing a variety of seawater pollution levels in the East China Sea. We investigated whether changes in sediment bacterial community structures would indicate the effects of the pollution gradient and of dispersal limitation. Our results showed consistent shifts in bacterial communities in response to pollution. More geographically distant sites had more dissimilar communities ( r = −0.886, P < 0.001) in this strongly connected sediment ecosystem. A variance analysis based on partitioning by principal coordinates of neighbor matrices (PCNM) showed that spatial distance (dispersal limitation) contributed more to bacterial community variation (8.2%) than any other factor, although the environmental factors explained more variance when combined (11.2%). In addition, potential indicator taxa (primarily affiliated with Deltaproteobacteria and Gammaproteobacteria ) were identified; these taxa characterized the pollution gradient. This study provides direct evidence that dispersal limitation exists in a strongly connected marine sediment ecosystem and that candidate indicator taxa can be applied to evaluate coastal pollution levels.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3