Genetic and topological analyses of the bop promoter of Halobacterium halobium: stimulation by DNA supercoiling and non-B-DNA structure

Author:

Yang C F1,Kim J M1,Molinari E1,DasSarma S1

Affiliation:

1. Department of Microbiology, University of Massachusetts, Amherst 01003, USA.

Abstract

The bop gene of wild-type Halobacterium halobium NRC-1 is transcriptionally induced more than 20-fold under microaerobic conditions. bop transcription is inhibited by novobiocin, a DNA gyrase inhibitor, at concentrations subinhibitory for growth. The exposure of NRC-1 cultures to novobiocin concentrations inhibiting bop transcription was found to partially relax plasmid DNA supercoiling, indicating the requirement of high DNA supercoiling for bop transcription. Next, the bop promoter region was cloned on an H. halobium plasmid vector and introduced into NRC-1 and S9, a bop overproducer strain. The cloned promoter was active in both H. halobium strains, but at a higher level in the overproducer than in the wild type. Transcription from the bop promoter on the plasmid was found to be inhibited by novobiocin to a similar extent as was transcription from the chromosome. When the cloned promoter was introduced into S9 mutant strains with insertions in either of two putative regulatory genes, brp and bat, no transcription was detectable, indicating that these genes serve to activate transcription from the bop promoter in trans. Deletion analysis of the cloned bop promoter from a site approximately 480 bp upstream of bop showed that a 53-bp region 5' to the transcription start site is sufficient for transcription, but a 28-bp region is not. An 11-bp alternating purine-pyrimidine sequence within the functional promoter region, centered 23 bp 5' to the transcription start point, was found to display DNA supercoiling-dependent sensitivity to S1 nuclease and OsO4, which is consistent with a non-B-DNA conformation similar to that of left-handed Z-DNA and suggests the involvement of unusual DNA structure in supercoiling-stimulated bop gene transcription.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3