Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE

Author:

Grunden A M1,Ray R M1,Rosentel J K1,Healy F G1,Shanmugam K T1

Affiliation:

1. Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA.

Abstract

The modABC gene products constitute the molybdate-specific transport system in Escherichia coli. Another operon coding for two proteins which diverges from the modABCD operon has been identified. The first gene of this operon codes for a 262-amino-acid protein, designated ModE (28 kDa), and the second genes codes for a 490-amino-acid protein. ModF (54 kDa). The role of ModF has not yet been determined; however, mutations in modE depressed modABCD transcription even in the presence of molybdate, suggesting that ModE is a repressor. ModE, in the presence of 1 mM molybdate, repressed the production of plasmid-encoded ModA and ModB' proteins in an in vitro transcription-translation system. DNA mobility shift experiments confirmed that ModE binds to an oligonucleotide derived from the operator region of the modABCD operon. Further experimentation indicated that ModE binding to target DNA minimally requires an 8-bp inverted-repeat sequence, TAAC GITA. A highly conserved amino acid sequence, TSARNOXXG (amino acids 125 to 133), was identified in ModE and homologs from Azotobacter vinelandii, Haemophilus influenzae, Rhodobacter capsulatus, and Clostridium pasterianum. Mutants with mutations in either T or G of this amino acid sequence were isolated as "superrepressor" mutants. These mutant proteins repressed modABCD transcription even in the absence of molybdate, which implies that this stretch of amino acids is essential for the binding of molybdate by the ModE protein. These results show that molybdate transport in E. coli is regulated by ModE, which acts as a repressor when bound to molybdate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference46 articles.

1. Biosynthesis of the iron-molybdenum cofactor of nitrogenase;Allen R. M.;Crit. Rev. Biotechnol.,1994

2. Basic local alignment search tools;Altschul S. F.;J. Mol. Biol.,1990

3. Identification and characterization of NarQ, a second nitrate sensor for nitrate-dependent gene regulation in Escherichia coli;Chiang R. C.;Mol. Microbiol.,1992

4. Prediction of the secondary structure of proteins from their amino acid sequence;Chou P. Y.;Adv. Enzymol.,1978

5. Molybdenum uptake in Escherichia coli K12;Corcuera G. L.;J. Gen. Microbiol.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3