Affiliation:
1. Central Laboratory of The Netherlands Red Cross Blood Transfusion Service, Amsterdam.
Abstract
Previously, we and others have demonstrated a relation between the clinical course of human immunodeficiency virus type 1 (HIV-1) infection and biological properties of HIV-1 variants such as replication rate, syncytium-inducing (SI) capacity, and cytotropism. For the molecular analysis of the biological variability in these properties, we generated a panel of phenotypically distinct yet genetically highly homologous infectious molecular clones. These clones were derived from HIV-1 isolates, mostly recovered by direct clonal isolation, from a single individual in whom a transition from non-SI to SI isolates had been identified over time. Of 17 molecular clones tested, 8 were infectious. The clones exhibited differences in SI capacity and T-cell line tropism. Their phenotypes corresponded to those of their parental isolates, formally demonstrating that biological variability of HIV-1 isolates can be attributed to single molecular clones. With these clones we demonstrated that SI capacity and tropism for the H9 T-cell line, almost invariably coupled in primary HIV-1 isolates, are discernible properties. Also different requirements appeared to exist for H9 and Sup T1 cell line tropism. We obtained evidence that T-cell line tropism is not caused by differences in level of HIV-1 expression but most probably is restricted at the level of virus entry. Restriction mapping of four clones with divergent phenotypes revealed a high degree of nucleotide sequence homology (over 96.3%), indicating the usefulness of these clones for the tracking of genetic variability critical for differences in biological phenotype.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献