A Mutant Chaperonin That Is Functional at Lower Temperatures Enables Hyperthermophilic Archaea To Grow under Cold-Stress Conditions

Author:

Gao Le1,Imanaka Tadayuki2,Fujiwara Shinsuke13

Affiliation:

1. Research Center for Intelligent Bio-Materials, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan

2. Research Organization of Science and Technology, Ritsumeikan University, Kasatsu, Shiga, Japan

3. Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan

Abstract

ABSTRACT Thermococcus kodakarensis grows optimally at 85°C and possesses two chaperonins, cold-inducible CpkA and heat-inducible CpkB, which are involved in adaptation to low and high temperatures, respectively. The two chaperonins share a high sequence identity (77%), except in their C-terminal regions. CpkA, which contains tandem repeats of a GGM motif, shows its highest ATPase activity at 60°C to 70°C, whereas CpkB shows its highest activity at temperatures higher than 90°C. To clarify the effects of changes in ATPase activity on chaperonin function at lower temperatures, various CpkA variants were constructed by introducing single point mutations into the C-terminal region. A CpkA variant in which Glu530 was replaced with Gly (CpkA-E530G) showed increased ATPase activity, with its highest activity at 50°C. The efficacy of the CpkA variants against denatured indole-3-glycerol-phosphate synthase of T. kodakarensis (TrpC Tk ), which is a CpkA target, was then examined in vitro . CpkA-E530G was more effective than wild-type CpkA at facilitating the refolding of chemically unfolded TrpC Tk at 50°C. The effect of cpkA-E530G on cell growth was then examined by introducing cpkA-E530G into the genome of T. kodakarensis KU216 ( pyrF ). The mutant strain, DA4 ( pyrF cpkA-E530G ), grew as well as the parental KU216 strain at 60°C. In contrast, DA4 grew more vigorously than KU216 at 50°C. These results suggested that the CpkA-E530G mutation prevented cold denaturation of proteins under cold-stress conditions, thereby enabling cells to grow in cooler environments. Thus, a single base pair substitution in a chaperonin gene allows cells to grow vigorously in a new environment. IMPORTANCE Thermococcus kodakarensis possesses two group II chaperonins, cold-inducible CpkA and heat-inducible CpkB, which are involved in adaptation to low and high temperatures, respectively. CpkA might act as an “adaptive allele” to adapt to cooler environments. In this study, we compared the last 20 amino acids within the C termini of the chaperonins and found a clear correlation between the CpkA-type chaperonin gene copy number and growth temperature. Furthermore, we introduced single mutations into the CpkA C-terminal region to clarify its role in cold adaptation, and we showed that a single base substitution allowed the organism to adapt to a lower temperature. The present data suggest that hyperthermophiles have evolved by obtaining mutations in chaperonins that allow them to adapt to a colder environment.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3