Influence of Freeze-Thaw Stress on the Structure and Function of Microbial Communities and Denitrifying Populations in Soil

Author:

Sharma Shilpi1,Szele Zsofia1,Schilling Rolf1,Munch Jean Charles1,Schloter Michael1

Affiliation:

1. Institute of Soil Ecology, GSF-National Research Center for Environment and Health, P.O. Box 1129, D-85764 Neuherberg, Germany

Abstract

ABSTRACT Microbial N 2 O release during the course of thawing of soil was investigated in model experiment focusing on denitrification, since freeze-thaw has been shown to cause significant physical and biological changes in soil, including a surge of N 2 O and CO 2 . The origin of these is still controversially discussed. The increase in denitrification after thawing may be attributed to the diffusion of organic substrates newly available to denitrifiers from disrupted soil aggregates, leading to an increase in microbial activity. Laboratory experiments with upper soil layer of a grassland were conducted in microcosms for real-time gas measurements during the entire phase of freeze and thaw. Shifts in microbial communities were evident on resolution of 16S and 18S rRNA genes and transcripts by denaturing gradient gel electrophoresis (DGGE). Microbial expression profiles were compared by RNA-arbitrarily primed PCR technique and subsequent resolution of amplified products on acrylamide gels. Differences in expression levels of periplasmic nitrate reductase gene ( napA ) and cytochrome cd 1 nitrite reductase ( nirS ) were observed by most-probable-number-reverse transcription-PCR, with higher levels of expression occurring just after thawing began, followed by a decrease. napA and nirS DGGE profiles showed no change in banding patterns with fingerprints derived from DNA, whereas those derived from cDNA showed a clear succession of denitrifying bacteria, with the most complex pattern being observed at the end of the N 2 O surge. This study provides insight into the structural community changes and expression dynamics of denitrifiers as a result of freeze-thaw stress. Also, the results presented here support the belief that the gas fluxes observed during thawing is a result of freezing initiated high microbial activity.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3