Analysis of the Endophytic Actinobacterial Population in the Roots of Wheat ( Triticum aestivum L.) by Terminal Restriction Fragment Length Polymorphism and Sequencing of 16S rRNA Clones

Author:

Conn Vanessa M.1,Franco Christopher M. M.1

Affiliation:

1. Department of Medical Biotechnology, Flinders University, Bedford Park, South Australia 5042, Australia

Abstract

ABSTRACT The endophytic actinobacterial population in the roots of wheat grown in three different soils obtained from the southeast part of South Australia was investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of the amplified 16S rRNA genes. A new, validated approach was applied to the T-RFLP analysis in order to estimate, to the genus level, the actinobacterial population that was identified. Actinobacterium-biased primers were used together with three restriction enzymes to obtain terminal restriction fragments (TRFs). The TRFs were matched to bacterial genera by the T-RFLP Analysis Program, and the data were analyzed to validate and semiquantify the genera present within the plant roots. The highest diversity and level of endophytic colonization were found in the roots of wheat grown in a dark loam from Swedes Flat, and the lowest were found in water-repellent sand from Western Flat. This molecular approach detected a greater diversity of actinobacteria than did previous culture-dependent methods, with the predominant genera being Mycobacterium (21.02%) in Swedes Flat, Streptomyces (14.35%) in Red Loam, and Kitasatospora (15.02%) in Western Flat. This study indicates that the soil that supported a higher number of indigenous organisms resulted in wheat roots with higher actinobacterial diversity and levels of colonization within the plant tissue. Sequencing of 16S rRNA clones, obtained using the same actinobacterium-biased PCR primers that were used in the T-RFLP analysis, confirmed the presence of the actinobacterial diversity and identified a number of Mycobacterium and Streptomyces species.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3