Simultaneous Detection and Identification of Common Cell Culture Contaminant and Pathogenic Mollicutes Strains by Reverse Line Blot Hybridization

Author:

Wang Hui12,Kong Fanrong13,Jelfs Peter1,James Gregory1,Gilbert Gwendolyn L.13

Affiliation:

1. Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead

2. Department of Dermatology, Wuhan First Hospital, Wuhan, Hubei Province, People's Republic of China

3. Department of Medicine, University of Sydney, Sydney, New South Wales, Australia

Abstract

ABSTRACT We have developed a reverse line blot (RLB) hybridization assay to detect and identify the commonest mollicutes causing cell line contamination ( Mycoplasma arginini , Mycoplasma fermentans , Mycoplasma hyorhinis , Mycoplasma orale , and Acholeplasma laidlawii ) and human infection ( Mycoplasma pneumoniae, Mycoplasma hominis , Mycoplasma genitalium , Ureaplasma parvum , and Ureaplasma urealyticum ). We developed a nested PCR assay with “universal” primers targeting the mollicute 16S-23S rRNA intergenic spacer region. Amplified biotin-labeled PCR products were hybridized to membrane-bound species-specific oligonucleotide probes. The assay correctly identified reference strains of 10 mollicute species. Cell cultures submitted for detection of mollicute contamination, clinical specimens, and clinical isolates were initially tested by PCR assay targeting a presumed mollicute-specific sequence of the 16S rRNA gene. Any that were positive were assessed by the RLB assay, with species-specific PCR assay as the reference method. Initially, 100 clinical and 88 of 92 cell culture specimens gave concordant results, including 18 in which two or more mollicute species were detected by both methods. PCR and sequencing of the 16S-23S rRNA intergenic spacer region and subsequent retesting by species-specific PCR assay of the four cell culture specimens for which results were initially discrepant confirmed the original RLB results. Sequencing of amplicons from 12 cell culture specimens that were positive in the 16S rRNA PCR assay but negative by both the RLB and species-specific PCR assays failed to identify any mollicute species. The RLB hybridization assay is sensitive and specific and able to rapidly detect and identify mollicute species from clinical and cell line specimens.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3