p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate

Author:

Eaton R W1

Affiliation:

1. National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, USA. eaton.richard@epamail.epa.gov

Abstract

Pseudomonas putida F1 utilizes p-cymene (p-isopropyltoluene) by an 11-step pathway through p-cumate (p-isopropylbenzoate) to isobutyrate, pyruvate, and acetyl coenzyme A. The cym operon, encoding the conversion of p-cymene to p-cumate, is located just upstream of the cmt operon, which encodes the further catabolism of p-cumate and is located, in turn, upstream of the tod (toluene catabolism) operon in P. putida F1. The sequences of an 11,236-bp DNA segment carrying the cym operon and a 915-bp DNA segment completing the sequence of the 2,673-bp DNA segment separating the cmt and tod operons have been determined and are discussed here. The cym operon contains six genes in the order cymBCAaAbDE. The gene products have been identified both by functional assays and by comparing deduced amino acid sequences to published sequences. Thus, cymAa and cymAb encode the two components of p-cymene monooxygenase, a hydroxylase and a reductase, respectively; cymB encodes p-cumic alcohol dehydrogenase; cymC encodes p-cumic aldehyde dehydrogenase; cymD encodes a putative outer membrane protein related to gene products of other aromatic hydrocarbon catabolic operons, but having an unknown function in p-cymene catabolism; and cymE encodes an acetyl coenzyme A synthetase whose role in this pathway is also unknown. Upstream of the cym operon is a regulatory gene, cymR. By using recombinant bacteria carrying either the operator-promoter region of the cym operon or the cmt operon upstream of genes encoding readily assayed enzymes, in the presence or absence of cymR, it was demonstrated that cymR encodes a repressor which controls expression of both the cym and cmt operons and is inducible by p-cumate but not p-cymene. Short (less than 350 bp) homologous DNA segments that are located upstream of cymR and between the cmt and tod operons may have been involved in recombination events that led to the current arrangement of cym, cmt, and tod genes in P. putida F1.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3