Roles of the histidine protein kinase pleC in Caulobacter crescentus motility and chemotaxis

Author:

Burton G J1,Hecht G B1,Newton A1

Affiliation:

1. Department of Molecular Biology, Princeton University, New Jersey 08544, USA.

Abstract

The Caulobacter crescentus histidine kinase genes pleC and divJ have been implicated in the regulation of polar morphogenesis and cell division, respectively. Mutations in pleC also potentiate the cell division phenotype of divJ mutations. To investigate the involvement of the PleC kinase in motility and cell cycle regulation, we carried out a pseudoreversion analysis of the divJ332 allele, which confers a temperature-sensitive motility (Mot-) phenotype. All cold-sensitive pseudorevertants with a Mot+ phenotype at 37 degrees C and a cold-sensitive swarm phenotype in soft agar at 24 degrees C contained extragenic suppressors that were null mutations mapping to pleC. Instead of a cell division defect at the nonpermissive temperature, however, revertants displayed a cold-sensitive defect in chemotaxis (Che-). In addition, the mutant cells were also supermotile, a phenotype previously associated only with mutations in the response regulator gene pleD that block the loss of motility. We also found that the Mot- defect of pleC mutants is suppressed by a pleD301/pleD+ merodiploid and results in a similar, supermotile, cold-sensitive Che- phenotype. These results implicate signal transduction pathways mediated by PleC-DivK and DivJ-PleD in the regulation of chemotaxis as well as motility. We discuss these findings and the observation that although the PleC kinase does not play an indispensable role in cell division, a temperature-sensitive allele of pleC (pleC319) has severely reduced viability under stringent growth conditions.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3