Affiliation:
1. School of Biological Sciences, University of Wales, Bangor, Gwynedd, United Kingdom.
Abstract
Rhodococcus globerulus PWD1, a soil isolate from a polluted site in The Netherlands, is able to degrade a broad range of aromatic compounds. A novel gene cluster which appears to encode a pathway for the degradation of phenolic acids such as 3-(3-hydroxyphenyl)propionate (3HPP) has been cloned from the chromosome of this organism. Sequence analysis of a 7-kb region identified five open reading frames (ORFs). Analysis of mRNA showed that the genes were expressed during growth on 3HPP and 3-hydroxyphenylacetate (3HPA) but not during growth on m-cresol or succinate. The first ORF, hppA, which appears to be separately transcribed, had considerable amino acid identity with a number of hydroxylases. Transcriptional analysis indicates that the next four ORFs, hppCBKR, which are tightly clustered, constitute a single operon. These genes appear to encode a hydroxymuconic semialdehyde hydrolase (HppC), an extradiol dioxygenase (HppB), a membrane transport protein (HppK), and a member of the IclR family of regulatory proteins (HppR). The activities of HppB and HppC have been confirmed by enzyme assay of Escherichia coli hosts. The substrate specificity of HppB expressed from the cloned gene matches that of the meta-cleavage dioxygenase expressed from wild-type Rhodococcus grown on both 3HPP and 3HPA and is considerably more active against acid than against neutral catechols. The deduced amino acid sequences of the gene products have a recognizable homology with a broad range of enzymes and proteins involved in biodegradation and appear most similar to the mhp operon from E. coli K-12, which also encodes the degradation of 3HPP.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献