Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions

Author:

Fareleira P1,Legall J1,Xavier A V1,Santos H1

Affiliation:

1. Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.

Abstract

The sulfate-reducing bacterium Desulfovibrio gigas accumulates large amounts of polyglucose as an endogenous carbon and energy reserve. In the absence of exogenous substrates, the intracellular polysaccharide was utilized, and energy was conserved in the process (H. Santos, P. Fareleira, A. V. Xavier, L. Chen, M.-Y. Liu, and J. LeGall, Biochem. Biophys. Res. Commun. 195:551-557, 1993). When an external electron acceptor was not provided, degradation of polyglucose by cell suspensions of D. gigas yielded acetate, glycerol, hydrogen, and ethanol. A detailed investigation of the metabolic pathways involved in the formation of these end products was carried out, based on measurements of the activities of glycolytic enzymes in cell extracts, by either spectrophotometric or nuclear magnetic resonance (NMR) assays. All of the enzyme activities associated with the glycogen cleavage and the Embden-Meyerhof pathway were determined as well as those involved in the formation of glycerol from dihydroxyacetone phosphate (glycerol-3-phosphate dehydrogenase and glycerol phosphatase) and the enzymes that catalyze the reactions leading to the production of ethanol (pyruvate decarboxylase and ethanol dehydrogenase). The key enzymes of the Entner-Doudoroff pathway were not detected. The methylglyoxal bypass was identified as a second glycolytic branch operating simultaneously with the Embden-Meyerhof pathway. The relative contribution of these two pathways for polyglucose degradation was 2:3. 13C-labeling experiments with cell extracts using isotopically enriched glucose and 13C-NMR analysis supported the proposed pathways. The information on the metabolic pathways involved in polyglucose catabolism combined with analyses of the end products formed from polyglucose under fermentative conditions provided some insight into the role of NADH in D. gigas. In the presence of electron acceptors, NADH resulting from polyglucose degradation was utilized for the reduction of sulfate, thiosulfate, or nitrite, leading to the formation of acetate as the only carbon end product besides CO2. Evidence supporting the role of NADH as a source of reducing equivalents for the production of hydrogen is also presented.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NMR-based metabolomic analysis of the physiological role of the electron-bifurcating FeFe-hydrogenase Hnd in Solidesulfovibrio fructosivorans under pyruvate fermentation;Microbiological Research;2023-03

2. Engineered Strains in the Development of the Biofuel Industry;Bio-Clean Energy Technologies: Volume 1;2022

3. Cell Biology and Metabolism;Sulfate-Reducing Bacteria and Archaea;2022

4. Systems Contributing to the Energetics of SRBP;Sulfate-Reducing Bacteria and Archaea;2022

5. Characteristics and Taxonomy;Sulfate-Reducing Bacteria and Archaea;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3