Transcriptional and translational regulation of nitrogenase in light-dark- and continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142

Author:

Colón-López M S1,Sherman D M1,Sherman L A1

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.

Abstract

Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium which demonstrated extensive metabolic periodicities of photosynthesis, respiration, and nitrogen fixation when grown under N2-fixing conditions. N2 fixation and respiration peaked at 24-h intervals early in the dark or subjective-dark period, whereas photosynthesis was approximately 12 h out of phase and peaked toward the end of the light or subjective-light phase. Gene regulation studies demonstrated that nitrogenase is carefully controlled at the transcriptional and posttranslational levels. Indeed, Cyanothece sp. strain ATCC 51142 has developed an expensive mode of regulation, such that nitrogenase was synthesized and degraded each day. These patterns were seen when cells were grown under either light-dark or continuous-light conditions. Nitrogenase mRNA was synthesized from the nifHDK operon during the first 4 h of the dark period under light-dark conditions or during the first 6 h of the subjective-dark period when grown in continuous light. The nitrogenase NifH and NifDK subunits reached a maximum level at 4 to 10 h in the dark or subjective-dark periods and were shown by Western blotting and electron microscopy immunocytochemistry to be thoroughly degraded toward the end of the dark periods. An exception is the NifDK protein (MoFe-protein), which appeared not to be completely degraded under continuous-light conditions. We hypothesize that cellular O2 levels were kept low by decreasing photosynthesis and by increasing respiration in the early dark or subjective-dark periods to permit nitrogenase activity. The subsequent increase in O2 levels resulted in nitrogenase damage and eventual degradation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3