Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis

Author:

Cáceres N E1,Harris N B1,Wellehan J F1,Feng Z1,Kapur V1,Barletta R G1

Affiliation:

1. Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583-0905, USA.

Abstract

D-Cycloserine is an effective second-line drug against Mycobacterium avium and Mycobacterium tuberculosis. To analyze the genetic determinants of D-cycloserine resistance in mycobacteria, a library of a resistant Mycobacterium smegmatis mutant was constructed. A resistant clone harboring a recombinant plasmid with a 3.1-kb insert that contained the glutamate decarboxylase (gadA) and D-alanine racemase (alrA) genes was identified. Subcloning experiments demonstrated that alrA was necessary and sufficient to confer a D-cycloserine resistance phenotype. The D-alanine racemase activities of wild-type and recombinant M. smegmatis strains were inhibited by D-cycloserine in a concentration-dependent manner. The D-cycloserine resistance phenotype in the recombinant clone was due to the overexpression of the wild-type alrA gene in a multicopy vector. Analysis of a spontaneous resistant mutant also demonstrated overproduction of wild-type AlrA enzyme. Nucleotide sequence analysis of the overproducing mutant revealed a single transversion (G-->T) at the alrA promoter, which resulted in elevated beta-galactosidase reporter gene expression. Furthermore, transformants of Mycobacterium intracellulare and Mycobacterium bovis BCG carrying the M. smegmatis wild-type alrA gene in a multicopy vector were resistant to D-cycloserine, suggesting that AlrA overproduction is a potential mechanism of D-cycloserine resistance in clinical isolates of M. tuberculosis and other pathogenic mycobacteria. In conclusion, these results show that one of the mechanisms of D-cycloserine resistance in M. smegmatis involves the overexpression of the alrA gene due to a promoter-up mutation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference55 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1989. Current protocols in molecular biology p. 1-8. Greene Publishing Associates and Wiley-Interscience New York N.Y.

2. Time-dependent inhibition of Bacillus stearothermophilus alanine racemase by (1-aminoethyl)phosphonate isomers by isomerization to noncovalent slowly dissociating enzyme-(1-aminoethyl)phosphonate complexes;Badet B.;Biochemistry,1986

3. An efficient and high-yielding method for isolation of RNA from mycobacteria;Bashyam M. D.;BioTechniques,1994

4. A study of the mycobacterial transcriptional apparatus: identification of novel features in promoter elements;Bashyam M. D.;J. Bacteriol.,1996

5. Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes;Blattner F. R.;Nucleic Acids Res.,1993

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3